In my last post, we walked through setup of an ESP8266 project managed with UV. Now we’ll construct a more complex project, adding a simple OLED display.
Hardware
Parts needed:
- esp8266 board
- OLED 0.96 inch Display
- jumper wires
- breadboard
(All of this is included in the ESP32 Basic Starter Kit).
Follow this schematic:
Connections:
OLED | ESP8266 |
---|---|
VCC | 3.3V |
GND | GND |
SCL | GPIO 5 (D1) |
SDA | GPIO 4 (D2) |
Software
Initialize Project
mkdir esp8266_oled
cd esp8266_oled
uv init
Add Dependencies
uv add esptool
uv add adafruit-ampy
Make sure you can communicate with the esp8266:
uv tool run --from esptool esptool.py chip_id
Flash MicroPython to the ESP8266
wget https://micropython.org/resources/firmware/ESP8266_GENERIC-20241129-v1.24.1.bin
uv tool run --from esptool esptool.py erase_flash
uv tool run --from esptool esptool.py --baud 460800 write_flash --flash_size=detect 0 ESP8266_GENERIC-20241129-v1.24.1.bin
Create Scripts
The MicroPython standard library doesn’t include support for the OLED by default. We’ll create a new ssd1306.py
file and update it with the required code.
touch ssd1306.py
Copy the contents of https://github.com/RuiSantosdotme/ESP-MicroPython/raw/master/code/Others/OLED/ssd1306.py into the file:
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
import time
import framebuf
# register definitions
= const(0x81)
SET_CONTRAST = const(0xa4)
SET_ENTIRE_ON = const(0xa6)
SET_NORM_INV = const(0xae)
SET_DISP = const(0x20)
SET_MEM_ADDR = const(0x21)
SET_COL_ADDR = const(0x22)
SET_PAGE_ADDR = const(0x40)
SET_DISP_START_LINE = const(0xa0)
SET_SEG_REMAP = const(0xa8)
SET_MUX_RATIO = const(0xc0)
SET_COM_OUT_DIR = const(0xd3)
SET_DISP_OFFSET = const(0xda)
SET_COM_PIN_CFG = const(0xd5)
SET_DISP_CLK_DIV = const(0xd9)
SET_PRECHARGE = const(0xdb)
SET_VCOM_DESEL = const(0x8d)
SET_CHARGE_PUMP
class SSD1306:
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
# Note the subclass must initialize self.framebuf to a framebuffer.
# This is necessary because the underlying data buffer is different
# between I2C and SPI implementations (I2C needs an extra byte).
self.poweron()
self.init_display()
def init_display(self):
for cmd in (
| 0x00, # off
SET_DISP # address setting
0x00, # horizontal
SET_MEM_ADDR, # resolution and layout
| 0x00,
SET_DISP_START_LINE | 0x01, # column addr 127 mapped to SEG0
SET_SEG_REMAP self.height - 1,
SET_MUX_RATIO, | 0x08, # scan from COM[N] to COM0
SET_COM_OUT_DIR 0x00,
SET_DISP_OFFSET, 0x02 if self.height == 32 else 0x12,
SET_COM_PIN_CFG, # timing and driving scheme
0x80,
SET_DISP_CLK_DIV, 0x22 if self.external_vcc else 0xf1,
SET_PRECHARGE, 0x30, # 0.83*Vcc
SET_VCOM_DESEL, # display
0xff, # maximum
SET_CONTRAST, # output follows RAM contents
SET_ENTIRE_ON, # not inverted
SET_NORM_INV, # charge pump
0x10 if self.external_vcc else 0x14,
SET_CHARGE_PUMP, | 0x01): # on
SET_DISP self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
= 0
x0 = self.width - 1
x1 if self.width == 64:
# displays with width of 64 pixels are shifted by 32
+= 32
x0 += 32
x1 self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_framebuf()
def fill(self, col):
self.framebuf.fill(col)
def pixel(self, x, y, col):
self.framebuf.pixel(x, y, col)
def scroll(self, dx, dy):
self.framebuf.scroll(dx, dy)
def text(self, string, x, y, col=1):
self.framebuf.text(string, x, y, col)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
# Add an extra byte to the data buffer to hold an I2C data/command byte
# to use hardware-compatible I2C transactions. A memoryview of the
# buffer is used to mask this byte from the framebuffer operations
# (without a major memory hit as memoryview doesn't copy to a separate
# buffer).
self.buffer = bytearray(((height // 8) * width) + 1)
self.buffer[0] = 0x40 # Set first byte of data buffer to Co=0, D/C=1
self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_framebuf(self):
# Blast out the frame buffer using a single I2C transaction to support
# hardware I2C interfaces.
self.i2c.writeto(self.addr, self.buffer)
def poweron(self):
pass
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
=0)
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=1)
cs.init(cs.OUT, valueself.spi = spi
self.dc = dc
self.res = res
self.cs = cs
self.buffer = bytearray((height // 8) * width)
self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.low()
self.cs.low()
self.spi.write(bytearray([cmd]))
self.cs.high()
def write_framebuf(self):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.high()
self.cs.low()
self.spi.write(self.buffer)
self.cs.high()
def poweron(self):
self.res.high()
1)
time.sleep_ms(self.res.low()
10)
time.sleep_ms(self.res.high()
Create and update main.py
. This is our entry point.
touch main.py
- Copy contents of https://github.com/RuiSantosdotme/ESP-MicroPython/raw/master/code/Others/OLED/main.py into the file, then
- Comment the esp32 pin assignment and uncomment the esp8266 pin assignment
Contents should end up like this:
# Complete project details at https://RandomNerdTutorials.com/micropython-programming-with-esp32-and-esp8266/
from machine import Pin, SoftI2C
import ssd1306
from time import sleep
# ESP32 Pin assignment
# i2c = SoftI2C(scl=Pin(22), sda=Pin(21)) # esp32
# ESP8266 Pin assignment
= SoftI2C(scl=Pin(5), sda=Pin(4))
i2c
= 128
oled_width = 64
oled_height = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)
oled
'Hello, World!', 0, 0)
oled.text('Hello, World 2!', 0, 10)
oled.text('Hello, World 3!', 0, 20)
oled.text(
oled.show()
Upload Scripts to ESP3266
uv tool run --from adafruit-ampy ampy -p /dev/ttyUSB0 put ssd1306.py
uv tool run --from adafruit-ampy ampy -p /dev/ttyUSB0 put main.py
uv tool run --from adafruit-ampy ampy -p /dev/ttyUSB0 ls
Run the Main Script
uv tool run --from adafruit-ampy ampy -p /dev/ttyUSB0 run main.py
On the OLED display you should see this:
Hello, World!
Hello, World 2! Hello, World 3!
You can learn more about what the code is doing here: https://randomnerdtutorials.com/micropython-oled-display-esp32-esp8266/