2025/04/17 20:23 1/8 Modern Perl

Modern Perl

Monday July 1, 2024

Last year, | wrote an article detailing my experience re-creating a Python script in Perl. This was a
pretty cumbersome exercise, but | didn’t use many of Perl’s newer features. | decided to re-visit this,
leveraging some of these newer features to see how well it improves the process.

Enabling Features

To take advantage of specific features, use the aptly named feature pragma.

You can enable an individual feature by name, and multiple features at once with qw(). For example,
this:

use feature 'fc'
use feature 'say

Is the same as this:
use feature qw(fc say

Full example:

use feature qw(fc say

$X 'Test'
say "The case-folded version of $x is: " fc $x
Output:

The case-folded version of Test is: test

Without use feature, you'd get this:

String found where operator expected (Do you need to predeclare "say"?) at
./test.pl line 7, near "say "The case-folded version of $x is: ""

syntax error at ./test.pl line 7, near "say "The case-folded version of $x
is: nn

Execution of ./test.pl aborted due to compilation errors.

You can also take advantage of feature bundles, enabling all of the features available as of a given
version:

implicitly loads 5.36 feature bundle

Jim's Blog - https://blog.devtoprd.com/

https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad
http://perldoc.perl.org/functions/qw.html
http://perldoc.perl.org/functions/qw.html

Last

update: posts:2024:2024_07_01_modern_perl_update https://blog.devtoprd.com/doku.php?id=posts:2024:2024_07_01_modern_perl_update&rev=1743356375

2025/03/30
10:39

use v5.36

But, you must also have (at least) that version of Perl installed, of course:

use v5.40

Perl v5.40.0 required--this is only v5.38.2, stopped at ./test.pl line 3.

BEGIN failed--compilation aborted at ./test.pl line 3.

Useful Features

Lots of new features have been added in recent years, but I'll take advantage of only a small subset

of them for this exercise. I'll be using features available in 5.38.2 and earlier.

Feature Version Notes

New class feature 5.38.0 |Adds support for object-oriented code.

New say built-in 5.10.0 |Works like print, adds a newline.
Subroytme signatures no longer considered 5.36.0 |Supports named parameters in subroutines.
experimental

Refactoring As Structured Code

We’'ll start with the first subroutine that’s called.

Here’s the original:

sub exec backup set
@source paths $
$target path $

$source path (@source paths
exec_backup($source path, $target path

And here’s the new version, using the signatures feature to implement subroutine arguments as

lexical variables:

sub exec backup set ($target path, @source paths
$source path (@source paths
exec_backup($source path, $target path

https://blog.devtoprd.com/

Printed on 2025/04/17 20:23

https://en.wikipedia.org/wiki/Perl_5_version_history

2025/04/17 20:23 3/8 Modern Perl

You'll notice that using named arguments in the method signature is a lot cleaner. But, we have to
swap the source_paths and target_path arguments. Why? Since source_paths is an array, it's a
‘slurpy’ argument, meaning it will reference all remaining arguments in the signature. So, if it were
the first argument, it would also absorb the contents of target_path.

A “slurpy” parameter is a list or hash parameter that “slurps up” all remaining arguments. Since
any following parameters can’t receive values, there can be only one slurpy parameter.

Slurpy parameters must come at the end of the signature and they must be positional.
Slurpy parameters are optional by default.
https://metacpan.org/pod/Method::Signatures#Slurpy-parameters

Next, we'll refactor the exec_backup subroutine. Here’s the original:

sub exec_ backup
$source, $target @

$proc_name "rsync -lrtv --delete \"${source}\" \"${target}\""
d $target

mkdir($target

d $target
print("Syncing ${source}...\n"
system($proc_name
print("Synced ${source}\n"

For our updated version, we’ll use the signatures feature again, along with the say feature:

sub exec backup modern ($source, $target
$proc_name "rsync -lrtv --delete \"${source}\" \"${target}\""

d $target
mkdir($target
d $target
say("Syncing ${source}..."

system($proc_name

say("Synced ${source}"

Jim's Blog - https://blog.devtoprd.com/

https://metacpan.org/pod/Method::Signatures#Slurpy-parameters
http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/system.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/system.html

Last
update:
2025/03/30
10:39

posts:2024:2024_07_01_modern_perl_update https://blog.devtoprd.com/doku.php?id=posts:2024:2024_07_01_modern_perl_update&rev=1743356375

Now we have enough information to refactor our entire script. Here's the “modern” version of our old
script

use strict
use warnings

use feature 'signatures'
use feature 'say'

sub exec backup ($source, $target
$proc_name "rsync -lrtv --delete \"${source}\" \"${target}\""

d $target
mkdir($target

d $target
say("Syncing ${source}..."

system($proc_name

say("Synced ${source}"

sub exec backup set ($target path, @source paths
$source path (@source paths
exec backup($source path, $target path

@target paths
"/targetl/", "/target2/"

regular file sets
@regular files
"/home/jimc/sourcel” "/home/jimc/source2"
"/home/jimc/source3" "/home/jimc/source4"

exec backup set($target paths[0], @regular files
large file sets

@large files “/home/jimc/largel”, "/home/jimc/large2"
exec_backup set($target paths[1]|, @large files

https://blog.devtoprd.com/ Printed on 2025/04/17 20:23

https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad
https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad
http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/system.html

2025/04/17 20:23 5/8 Modern Perl

sleep # pause before exiting

With these changes, we have a script that's more concise and readable.

Refactoring As Object-Oriented Code

We’ve improved the code, but what if we want to implement it using an object-oriented paradigm
instead of structured? We can accomplish this using the class feature.

Let’s start with a very simple example:

use strict
use warnings

use feature 'class'
use feature 'say'

class MyUtil: :Backup

method say hello
say("Hello!"

$backup obj MyUtil: :Backup->new
$backup obj->say hello

If you're familiar with “old” Perl, this will look very unusual. We have a couple of new keywords we're
using, class and method. In this example, we’'ve defined a new class Backup in a namespace
MyUtil. Inside the class, we have a single callable method named say hello. We create an
instance of the class named $backup obj and then call the say hello method. We run the code
and...

class is experimental at ./fullsync oop.pl line 9.
method is experimental at ./fullsync oop.pl line 11.
Hello!

The code runs, but the interpreter is warning us about the experimental nature of the class and
method keywords. We can suppress this with a no warnings directive. With our code now looking
like this:

use strict
use warnings

use feature 'class'
use feature 'say

no warnings 'experimental::class'

Jim's Blog - https://blog.devtoprd.com/

http://perldoc.perl.org/functions/sleep.html
http://perldoc.perl.org/functions/no.html

Last

;832;8;/30 posts:2024:2024_07_01_modern_perl_update https://blog.devtoprd.com/doku.php?id=posts:2024:2024_07_01_modern_perl_update&rev=1743356375

10:39

class MyUtil: :Backup
method say hello
say("Hello!"

$backup obj MyUtil: :Backup->new
$backup obj->say hello

We see this:
Hello!
Now let’s add a field to hold our name, and use it in our greeting:

use strict
use warnings

use feature 'class'
use feature 'say

no warnings 'experimental::class'
class MyUtil: :Backup

field $name param

method say hello
say("Hello, $name!"

$backup obj MyUtil: :Backup->new(name "Jim’
$backup obj->say hello

We've added a field named $name. param indicates that the field value will be initialized in the
constructor, which we call as MyUtil: :Backup-new(name = 'Jim').

When we run, we see this:
Hello, Jim!
Now we've learned enough to refactor our structured script, and make it object-oriented:

use strict
use warnings

use feature 'class'

https://blog.devtoprd.com/ Printed on 2025/04/17 20:23

http://perldoc.perl.org/functions/no.html

2025/04/17 20:23 7/8 Modern Perl

use feature 'say'
no warnings 'experimental::class'’
class MyUtil: :Backup

method exec backup ($source, $target
$proc_name "rsync -lrtv --delete \"${source}\" \"${target}\""

d $target
mkdir($target
d $target
say("Syncing ${source}..."

system($proc_name

say("Synced ${source}"

method exec backup set ($target path, @source paths
$source path (@source paths
$self->exec backup($source path, $target path

$backup obj MyUtil: :Backup->new

@target paths
“/targetl/", "/target2/"

regular file sets
@regular files
“/home/jimc/sourcel” "/home/jimc/source2"
"/home/jimc/source3"” "/home/jimc/source4"

$backup obj->exec backup set($target paths|[0], @regular files

large file sets
@large files “/home/jimc/largel”, "/home/jimc/large2"

$backup obj->exec backup set($target paths|[1], @large files

sleep(2 # pause before exiting

Jim's Blog - https://blog.devtoprd.com/

http://perldoc.perl.org/functions/no.html
http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/system.html
http://perldoc.perl.org/functions/sleep.html

Last
update:
2025/03/30
10:39

posts:2024:2024_07_01_modern_perl_update https://blog.devtoprd.com/doku.php?id=posts:2024:2024_07_01_modern_perl_update&rev=1743356375

This one’s a bit more verbose, but still pretty clean and readable.
Note the syntax of the call to the exec backup method from the exec backup set method: |

had to prefix it with $self to indicate that a method of the current instance of the class is being
called.

The Verdict

| still don’t consider Perl to be the friendliest language in the world, but taking advantage of modern
features definitely improves the experience!

Links To References

https://perldoc.perl.org/feature

https://perldoc.perl.org/5.38.0/perlclass

From:
https://blog.devtoprd.com/ - Jim's Blog

Permanent link:

Last update: 2025/03/30 10:39

https://blog.devtoprd.com/ Printed on 2025/04/17 20:23

https://perldoc.perl.org/feature
https://perldoc.perl.org/5.38.0/perlclass
https://blog.devtoprd.com/
https://blog.devtoprd.com/doku.php?id=posts:2024:2024_07_01_modern_perl_update&rev=1743356375

	Modern Perl
	Enabling Features
	Useful Features
	Refactoring As Structured Code
	Refactoring As Object-Oriented Code
	The Verdict
	Links To References

