
2025/04/04 23:09 1/5 Perl: Is It Really That Bad?

Jim's Blog - https://blog.devtoprd.com/

Perl: Is It Really That Bad? -- April 26, 2023

I have a simple Python script I wrote years ago that simplifies using rsync to maintain a copy of
important data on a second hard drive. I decided to refactor the script and clean it up a bit. As I got
ready to do this, it occurred to me: For a non-complex script like this, I wonder how difficult it would
be to rewrite it in Perl?

I hadn’t used Perl for anything serious for a long time. I knew I’d have to re-learn the basics. How
difficult would this be? Especially now that I’ve grown used to using much friendlier languages?

So, I went for it, and here’s some of the weirdness I encountered.

First of all, you don’t literally specify the type of a variable in Perl. With most languages, you’d expect
to be able to either:

Spell out the type, e.g., int my_integer, or1.
Have the compiler/interpreter infer the type from the usage, e.g., my_integer = 10.2.

Instead, Perl uses a special prefix character to indicate the type:

scalars (numbers, strings, and references) use $
my $string_var = "Hello!";
my $int_var = 10;

arrays use @
my @array_of_numbers = (1, 2, 3);

hashes (key/value pairs) use %
my %color_codes = ("blue" => 1, "red" => 2, "green" => 3);

Functions (“subroutines”) take a parameter list instead of individual arguments:

sub display_info {
 my ($name, $age) = @_;

 print("Hello, ${name}. You are ${age} years old.\n");
}

display_info("John", 42);

You can send named arguments as a hash, but they aren’t terribly friendly:

sub display_info {
 my (%params) = @_;

 print("Hello, $params{name}. You are $params{age} years old.\n");
}

display_info(
 name => "John",

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html

Last
update:
2024/04/29
09:25

posts:2023:2023.04.26_perl_really_that_bad https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad&rev=1714407946

https://blog.devtoprd.com/ Printed on 2025/04/04 23:09

 age => 42
);

Compare that to Python:

def display_info(name, age):
 print(f"Hello, {name}. You are {age} years old.")

display_info("John", 42)

Passing an array and a scalar to a function really tripped me up. If you try to do this:

sub favorite_colors {
 my @colors = @{ $_[0] };
 my $name = $ { $_[1] };
}

favorite_colors(("red","blue"), "John");

Then the array assignment consumes all of the arguments. In other words, @colors will contain
(“red”, “blue”, “John”), and $name will be unassigned. In order for this to work, the array must be
passed as a reference:

my @color_list = ("red","blue");

favorite_colors(\@color_list, "John");

Then, the reference scalar will be deferenced back into an array inside the function.

Despite the quirkiness, I did find some things to be pretty clean. I do like the syntax for iterating
through an array:

my @color_list = ("red","blue");
foreach my $color (@color_list) {
 print("Color: $color\n");
}

Calling external programs is also very straightforward:

system("program_name arg1 arg2");

File system operations, such as checking for the existence of a directory, are easy as well:

if (-d "/path/to/check") {
 # do stuff
}

When all was said and done, my backup script, written in Perl, was actually pretty nice:

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/system.html

2025/04/04 23:09 3/5 Perl: Is It Really That Bad?

Jim's Blog - https://blog.devtoprd.com/

#!/usr/bin/perl

use strict;
use warnings;

sub exec_backup {
 my ($source, $target) = @_;

 my $proc_name = "rsync -lrtv --delete \"${source}\" \"${target}\"";

 unless (-d $target) {
 mkdir($target);
 }

 if (-d $target) {
 print("Syncing ${source}...\n");
 system($proc_name);
 print("Synced ${source}\n");
 }

 print("----------\n");
}

sub exec_backup_set {
 my @source_paths = @{ $_[0] };
 my $target_path = $_[1];

 foreach my $source_path (@source_paths) {
 exec_backup($source_path, $target_path);
 }
}

my @target_paths =
 ("/target1/", "/target2/");

regular file sets
my @regular_files = (
 "/home/jimc/source1", "/home/jimc/source2",
 "/home/jimc/source3", "/home/jimc/source4"
);
exec_backup_set(\@regular_files, $target_paths[0]);

large file sets
my @large_files = ("/home/jimc/large1", "/home/jimc/large2");
exec_backup_set(\@large_files, $target_paths[1]);

sleep(2);

But, I think the Python version is cleaner and more intuitive:

#!/usr/bin/python3

http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/system.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/sleep.html

Last
update:
2024/04/29
09:25

posts:2023:2023.04.26_perl_really_that_bad https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad&rev=1714407946

https://blog.devtoprd.com/ Printed on 2025/04/04 23:09

import os
import subprocess
import time

def exec_backup(source, target):
 proc_name = f'rsync -lrtv --delete "{source}" "{target}"'

 if (not os.path.isdir(target)):
 os.makedirs(target)

 if (os.path.isdir(target)):
 print(f"Syncing {source}...")
 subprocess.call(proc_name, shell=True)
 print(f"Synced {source}")

 print("----------")

def exec_backup_set(source_paths, target_path):
 for source_path in source_paths:
 exec_backup(source_path, target_path)

if (__name__ == "__main__"):
 target_paths = ["/target1/", "/target2/"]

 # regular files
 exec_backup_set(
 ["/home/jimc/source1", "/home/jimc/source2",
 "/home/jimc/source3", "/home/jimc/source4"],
 target_paths[0]
)

 # large files
 exec_backup_set(
 ["/home/jimc/large1", "/home/jimc/large2"],
 target_paths[1]
)

 time.sleep(2)

So, in summary, I think that if I ever need to work in Perl again, I’m not too worried about it. But,
given the choice, I’ll stick with Python.

2025/04/04 23:09 5/5 Perl: Is It Really That Bad?

Jim's Blog - https://blog.devtoprd.com/

From:
https://blog.devtoprd.com/ - Jim's Blog

Permanent link:
https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_reall
y_that_bad&rev=1714407946

Last update: 2024/04/29 09:25

https://blog.devtoprd.com/
https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad&rev=1714407946
https://blog.devtoprd.com/doku.php?id=posts:2023:2023.04.26_perl_really_that_bad&rev=1714407946

	Perl: Is It Really That Bad? -- April 26, 2023

